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Demand Response (DR) 

Normal Consumption Reduced Consumption 
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•  Demand Response is used in smart grids to make the demand adaptive to supply 
conditions. 

•  Customers respond to signals from the utility to reduce their consumption during 
peak periods as per prior agreements. 



Prediction of  Reduced Consumption 
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Reduced consumption prediction is useful in following decision-making tasks: 

estimating potential reduction during 
DR (Chelmis et. al., 2015) 

performing dynamic DR at a few 
hours’ notice (Aman et. al., 2015) 

intelligently targeting customers for 
participation in DR (Ziekow et. al., 2015) 

estimating the amount of  incentives to be 
given to the customers (Wijaya et. al., 2014) 



Characteristics and Challenges 
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Normal Consumption DR Baseline Reduced Consumption 

Goal Planning, DR Curtailment calculation Planning, DR, dynamic DR 

Timing Outside the DR event Outside the DR event During the DR event 

Historical data Readily available Readily available Sparse or non-existent 

Compute 
requirements 

Offline or real-time Offline Real-time for dynamic DR 

Profile changes Gradual Gradual 
Abrupt at DR event 
boundaries 

Prior Work Several Several None 

We are the first to address this problem using data from DR experiments done on 
the USC campus. (Aman et. al., 2016), (Chelmis et. al., 2015) 



Key Challenges 
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•  Unavailability of  reduced consumption data 
•  Cancellation of  DR event when found violating thermal comfort limits of  occupants. 
•  Reduced consumption is affected by several factors  

-  time of  day/ day of  week 
-  reduction strategy 
-  human behavior 
-  external/environmental factors, e.g., temperature 

 
•  Time series models that work well for normal consumption prediction are 

ineffective for reduced consumption prediction, due to  
•  abrupt changes in consumption profile at the beginning and end of  

the DR event  
•  insufficient recent observations within the DR window for a time 

series model to be trained reliably 

Hypothesis 
Historical data from the past DR events can be used as predictors for reduced consumption.  



Consumption Sequences 

…	 …	 …	
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DR sequence Pre-DR sequence 

Daily sequence Ei = {ei,1, ei,2, ..., ei,J}

1 J d 

Ei,1,d�1 = {ei,1, ei,2, ..., ei,d�1} Ei,d,L = {ei,d, ei,d+1, ..., ei,d+L�1}

ei,j
Ei,s,l

– Electricity consumed on day i in interval j 
– Subsequence of  daily sequence       starting at s of  length l 
– Length of  the DR interval 
– The interval when DR begins 
– Number of  intervals in a day 

Ei
L
d

d > 1

d+ L� 1  J

J



Contextual Attributes 
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… … …

… … …

… … …

Daily Context 
Ci = hAi[1], ..., Ai[Nt], Bi[1], ..., Bi[Ns]i

Ci,1,d�1 = hAi[1], ..., Ai[Nt], Bi[1], ..., Bi[Ns]i

Ai[k] = {ai,1, ai,2, ..., ai,J}

Ai[k] = {ai,1, ai,2, ..., ai,d�1}

Pre-DR Context 

Ai[1]

Ai[Nt]

Time series attributes 

Ns - # of  static attributes 

Nt - # time series attributes 

Static attributes 

Bi[1] . . . Bi[Ns]

•  Time Series attributes: vary over intervals 
 - temperature, dynamic pricing, occupancy, etc. 

•  Static attributes: same for all intervals 
 - day of  week, holiday, etc.  

1 J d 

Correspond to the Daily Sequence and Pre-DR Sequence 
defined previously. 



REDUCE – Reduced Consumption Ensemble 
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IDS 
In-DR Sequence 

Model 

PDS 
Pre-DR Sequence 
Similarity Model 

DSS 
Daily Sequence 
Similarity Model 

REDUCE 

[Ê✏,d,L]IDS [Ê✏,d,L]PDS [Ê✏,d,L]DSS

Random Forest 
Model 

Final Output 

•                      – In-DR sequence predicted by model m on day  
•  Ensemble Models combine base models that model different behaviors, for e.g., mean 

behavior, context dependent behavior, etc. 
•  Random Forest Models are found to perform better than a single regression tree (Breiman, 2001)  

[Ê✏,d,L]m ✏



IDS – In-DR Sequence Model 
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•  Models “mean behavior” 
•  Similar to the averaging approach used by the utilities/ISOs to calculate the DR 

baseline.  
•  While utilities average over similar non-DR days, IDS averages over all DR days. 

•  Advantages: 
•  Low computation cost – suitable for real-time predictions 
•  Uni-variate model – low data collection cost 

[Êi,d,L]IDS =
1

|E|

|E|X

✏=1

E✏,d,L

•  Predicted sequence is given by: 

            is the set of  historical DR days E



PDS – Pre-DR Sequence Similarity Models 
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•  Pre-DR sequence  
•  Pre-DR context 
•  Similarity is calculated by:  

Used to select similar DR days  

If  two DR days have similar pre-DR sequences, their in-DR sequences would be similar.  

SimScore(✏, i) = sim(hE✏,1,d�1, C✏,1,d�1i, hEi,1,d�1, Ci,1,d�1i)

•  Selected days are sorted based on decreasing similarity and weighed accordingly. 
•  Predicted sequence is given by: 

[Êi,d,L]PDS =
1

|E|

|E|X

✏=1

!✏ ⇥ E✏,d,L

PDS models context dependent behavior 

is the set of  historical DR days 
is the weight on day 

E
!✏ ✏



DSS – Daily Sequence Similarity Models 
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•  Daily sequence  
•  Daily context 
•  Form daily profiles for each day 
  
•  Cluster daily profiles and let       be the centroid of  each cluster 

•  Probability of  a given DR day belonging to a cluster is given by: 

           is constant used to normalize the probability values between 0 and 1 

Used to discover clusters of  daily profiles 

[Êi,d,L]DSS =
1

Nk

NkX

m=1

P (i 2 Cm)⇥ Ecm,d,L

•  Predicted sequence is given by: 

cm =
1

Nk

NkX

✏=1

hE✏, C✏i
P✏ = hE✏, C✏i

P (i 2 Cm) =
1

↵kPi,1,d�1 � Pcm,1,d�1k2P (i 2 Cm) =
1

↵kPi,1,d�1 � Pcm,1,d�1k2



Experiments 
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•  Reduced Consumption Data was collected from 952 DR events (2012-2014) on 32 
buildings at USC campus 

•  Data granularity: 15 minutes (J = 96 intervals per day) 
•  DR event duration: 1 PM to 5 PM (L = 16 intervals) 
•  One time series attribute: Temperature 
•  Seven static attributes: Day of  week 

Distribution of  DR events across buildings 



Results – MAPE (1) 
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MAPE across buildings 



Results – MAPE (2) 
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•  REDUCE outperforms the baseline IDS for about 70% of  the buildings 
•  It also limits prediction error to <10% for over half  the buildings 

– considered highly reliable by domain experts (Aman et. al., 2015)  
•  Overall average error is 13.5%, an improvement of  8.8% over the baseline 

•  952 DR events (2012 – 2014) 
•  32 USC buildings 
•  Contextual attributes:  

-  temperature (NOAA) 
-  day of  week 



Results – Effect of  Schedule (1) 
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We examine two types of  buildings: 
•  Schedule-driven: consisting primarily of  classrooms (activities governed by schedules) 
•  Non-schedule driven: Few or no classrooms 

Case Study: 
•  B21 – Non-scheduled: 

 a building with large computer labs, and faculty and graduate student offices 
•  B28 – Non-scheduled:  

a campus center building with large meeting spaces, and a grand ballroom with seating for 
over 1000 people 

•  B14 – Scheduled: 
an academic building with classrooms and few office spaces. 

Results: 
•  For non-scheduled buildings, REDUCE gives superior performance 
•  For scheduled buildings, IDS performs well due to the presence of  repetitive human activity 

coupled to class schedules 

•  Corollary: REDUCE would perform better for residential buildings (with non-scheduled activities). 
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MAPE errors for B21 (Non-scheduled building) 

Results – Effect of  Schedule (2) 
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MAPE errors for B28 (Non-scheduled building) 

Results – Effect of  Schedule (3) 
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MAPE errors for B14 (Scheduled building) 

Results – Effect of  Schedule (4) 

For scheduled buildings, IDS performs well due to the presence of  repetitive human 
activity coupled to class schedules 
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Results – Effect of  Training Data Size 

•  The performance of  REDUCE is not sensitive to the training data size.  
•  Corollary: REDUCE would allow accurate predictions to be made with fewer historical 

data which is useful for new buildings as well as for reducing computational and storage 
requirements.	
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Results – Effect of  Variance in Consumption 

•  Prediction error decreases with increasing average consumption for REDUCE model. 
•  This could be attributed to more stable and predictable behavior for larger buildings, 

though it needs further investigation to understand this behavior.  
•  Also, for smaller buildings, the electricity consumption values are small; so even when 

the predicted value is offset by a small amount, it translates to a large percentage error. 



Conclusion 
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We propose a novel ensemble model for reduced consumption prediction   
•  Achieve an average error of  13.5%, (an improvement of  8.8% over baseline) 
•  Low computational complexity 
•  Practical solution for real-time prediction 
•  Allows domain experts to integrate a variety of  contextual attributes  

 
Our  proposed model is particularly relevant for: 

•  buildings for which electricity consumption does not follow a strict schedule (i.e., 
absence of  periodic activities) 

•  buildings with less historical DR data.  
 
Our results set the foundation for future modeling and practice of  DR programs in smart 
grids. 
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