Influence-driven Model for Time Series Prediction

from Partial Observations

Saima Aman, Charalampos Chelmis, Viktor Prasanna

s₁

Motivation: Smart Power Grids

- Real-time monitoring
- Advanced Big Data Analytics

Problem

- Bandwidth limitations of existing communication networks
- Transmission limited by consumers due to security and privacy concerns
- Only partial real-time data available at the central node

Challenges

- Millions of sensors used
- High-resolution predictions required for all sensors
- Unavailability of real-time data for most sensors

s ₁ [x_1^1		x^{1}_{t-r}				x^{1}_{t+1}		x^{1}_{t+h}		
s ₂	x_{1}^{2}		x_{t-r}^2	x^{2}_{t-r+1}		x_{t}^{2}	x_{t+1}^2		x_{t+h}^2		
Sg	x_{1}^{3}		x^{3}_{t-r}	•	K	R	x_{t+1}^{3}		x^{3}_{t+h}		
Missing real-time readings											
	$s_n x^n$		x^{n}_{t}	x_{t-1}^n	r+1	x^{r}	$x_{t+1}^n x_{t+1}^n$	-1	x^{n}_{t+h}		
	<u> </u>	Real-time readings							Prediction horizon		
Past readings											

• Data compression and aggregation

• Estimate missing data using interpolation

• These approaches ineffective for partial

Current Approaches

data

Missing Data	Partial Data
arbitrary unavailability of data	systematic unavailability of data
for variable durations	for known durations
from unknown sensors	from known sensors
diverse factors, such as transmission failure	due to non- transmission of data
data never available	data available later on

Solution

Reduce the transmission load:

• Effective prediction horizon becomes large

use real-time data from only a small subset of sensors

Prediction Models using Partial Data

Baseline model (ART)

Auto-regressive tree ART(p, b) – uses recent p values of a variable as features in a regression tree for hinterval ahead prediction

Identify dependencies between time series from recent historical data

Discover influential sensors using lasso based method

Train regression tree models using 3. real-time data from influential sensors as features

Influence Model (IM)

More recent real-time values of other sensors become more useful as predictors than a sensor's own relatively older values (used in ART).

Decreasing number of sensors required to transmit data in real time

Experiments and Results

Conclusions

- Partial data problem encountered in many sustainability domains that use sensor data
- Standard models for short term predictions perform poorly when trying to predict using partial data
- Our proposed influence models make predictions using real time data from only a few influential sensors, while still achieving comparable or better performance than the baseline

Performance Highlights

- IM reduces MAPE by up to 10%
- Beyond 2 hours, IM, LIMs and GIMs outperform ART, which suffers from longer effective horizons
- GIM uses the same set of influential sensors to make predictions for all sensors and still achieves comparable performance.
- Only $\approx 0.5\%$ increase in prediction error over ART while using just $\approx 7\%$ of smart meters.

ACKNOWLEDGEMENT

CONTACT saman@usc.edu

