
1

Adaptive Energy Forecasting and Information
Diffusion for Smart Power Grids

Yogesh Simmhan∗, Vaibhav Agarwal†, Saima Aman†, Alok Kumbhare†, Sreedhar
Natarajan†, Nikhil Rajguru†, Ian Robinson‡, Samuel Stevens‡, Wei Yin†, Qunzhi Zhou†

and Viktor Prasanna∗
∗Department of Electrical Engineering †Computer Science Department

‡Green Technologies Program
University of Southern California, Los Angeles Ca 90089

Email: {simmhan, agarwalv, saman, kumbhare, sreedhan, nrajguru, imrobins, spsteven,
weiyin, qunzhizh, prasanna}@usc.edu

I. INTRODUCTION

Smart Power Grids exemplify an emerging class of Cyber Physical Applications that exhibit dynamic,
distributed and data intensive (D3) characteristics along with an always-on paradigm to support operational
needs. Smart Grids are an outcome of instrumentation, such as Phasor Measurement Units and Smart
Power Meters, that is being deployed across the transmission and distribution network of electric grids.
This provides utilities with improved situation awareness on near-realtime electricity usage by individual
consumers, and the power quality and stability of the transmission network.

One of the characteristic applications of Smart Grids is demand response optimization (DR). The goal
of DR is to use the power consumption time series data to reliable forecast the future consumption
profile for individual consumers, and to use this information to detect potential demand-supply mismatch.
Further, such a detection should trigger load curtailment strategies that will use incentives communicated
to the consumer to shape, shift or shed load during the predicted period of duress to avoid blackouts or
brownouts.

As part of the Los Angeles Smart Grid Demonstration project, we are investigating scalable software
infrastructure that can support the needs of DR applications in the largest public utility in the United States.
The University of Southern California (USC) serves as a microgrid testbed to deploy and test the DR
software components and algorithms, with the intent to scale these applications to a city of 1.4 million
customers. Specifically, we address (1) the adaptive scalability required by the information integration
pipeline that continuously ingests sensor data, and (2) the ensemble scaling required to train machine
learned forecasting models on large datasets. The former utilizes our Floe continuous dataflow engine to
scale on a Eucalyptus Private Cloud to meet dynamic quality of service needs of the DR application; the
latter utilizes our OpenPlanet Hadoop application to perform ensemble training in a cluster environment.
The integrated information and forecasting models are accessed through a portal interface for decision
support by the USC microgrid control center and for information diffusion to the USC community for
energy awareness.

In the rest of this paper, we present details of the Smart Grid DR application and portal (Section II),
describe and analyze the novel features of the adaptive software architecture (Section III), and illustrate
the demonstration scenario for the challenge (Section IV).

II. SMART GRID DEMAND RESPONSE MANAGEMENT

The Smart Grid DR application can be decomposed into three phases: information ingest, data analytics,
and information diffusion. Here, we describe their characteristics.

2

A. Information Integration Pipeline
The DR application uses a variety of information sources that describe the Smart Grid or microgrid

environment for enhanced situation awareness and analytics. These sources pass through an information
processing pipeline that polls the source for its current data, parses the response into a canonical data
structure, annotates the data tuple with semantics, and inserts the RDF triples into a semantic repository.
Semantics are necessary to manage the information complexity of data describing diverse entities such
as the power grid, electrical equipment, building, academic and facility schedules, organizational details,
and weather.

The information integration pipeline needs to adapt to several forms of dynamism. Sensors are a primary
data source in the microgrid and include power meters in individual buildings or floors, equipment and
lighting reporting operational status, Heating Ventilation Air Conditioning (HVAC) units emitting setpoint
and ambient temperature, CO2 air quality monitors, and so on. These collectively number in the order of
50,000 (and increase over time with upgrades) but the ones that are monitored at a point in time depend
on the current DR application needs e.g. proximity to a peak load time period may cause additional
sources to be monitored. Further, the sampling rates of these sensors may vary from once every minute
to once an hour depending on the electric load (e.g night times are less interesting since the energy
use is limited). Hence, the macro- and micro-scopic spatial and temporal scales of data acquisition are
determined dynamically, with a corresponding need to scale the ingest up and down. Slow changing
data about buildings and equipment installation arrive in bulk mode, with low frequency but large sizes.
Occasionally, historical sensor data may also be loaded from archives. The pipeline needs to respond to
these variations while meeting the latency/data freshness needs of the DR application for operations.

B. Machine Learned Demand Forecasting Models
The DR application requires forecasting of power demand that is robust over time and evolves as the

microgrid behavior changes over time. Hence, we adopt machine learned forecasting models that use indi-
rect indicators of power usage. Specifically, we use regression tree learning models that predict the power
consumption at individual building and campus levels at 15-minute and daily granularities. The model
operates on features such as external temperature and humidity, academic semester, weekday/holiday, and
building type to make the predictions.

Constructing the regression tree model requires training it on historical time series data about these
features and the power consumption. This data itself is extracted from the information repository. We
use 3 years worth of training data for the training; for the 170 buildings on campus and using 15-min
time granularities, the training data is on the order of 20 Million tuples. In addition, distinct models can
be constructed for different combinations of spatial collections (each building, collection of buildings,
the whole campus), temporal granularities (15-min, 1-hour, 24-hour) and combinations of features to
determine the ones that offer the best prediction accuracy. This requires the ability to perform ensemble
runs of training that further need to be refreshed when newer data is accumulated. The training can happen
in batch mode or on-demand when a new spatio-temporal combination is required – the larger models
can take on the order of several days to train on a single machine.

C. Information Diffusion Portal
There are three primary types of information consumers within the USC microgrid – campus facility

operations, data analysts and the USC faculty/staff/students. Operators visualize realtime information in the
repository and energy forecasts to decide on operational changes such a initiating direct energy curtailment
in specific buildings by changing its thermostat temperatures. Analysts evaluate the effectiveness of
different forecasting models to select and configure appropriate ones for use. The USC public use the
current energy profile of buildings, their carbon footprint and the forecast power loads to understand
energy use within the campus and voluntarily take actions to limit their energy impact for sustainability.
A web portal serves as a central service for this information diffusion. It offers a campus map interface,
heatmap overlays, and graphical plots to explore the energy use and forecasts for different buildings and

3

for different time periods (Figure (b)). It relies on data present in the repository and realtime predictions
made using models that have already been trained.

Information
Integration

Pipeline

Semantic
Repository

Web Portal

Machine
Learning

Model Training

Forecast Model

Prediction

M

M

M

M

R

R

FutureGrid Cluster

VM VM

VM

VM VM

Tsangpo – Eucalyptus
Private Cloud

Floe Data Flow

OpenPlanet Ensemble

(a) Information Integration and Model Training (b) USC Smartgrid Portal

III. ADAPTIVE ARCHITECTURE

Our scalable software architecture to support the D3 needs of the DR application is centered around
two focal frameworks, Floe and OpenPlanet, that we discuss here and analyze their innovative features.

A. Information Ingest Pipeline using Floe
“Floe” 1 is a continuous data flow framework that incorporates adaptability and adaptivity to dynamic

application characteristics and the underlying infrastructure. Floe is used to model the information integra-
tion pipeline for DR. Floe goes beyond traditional workflow engines in using hybrid edge types between
tasks that can refer to both file and streaming data. This allows uniform composition of continuous as well
as batch processing applications. Floe also allows a limited form of dynamic recomposition of the data
flow at runtime to allow new data sources to be incorporated. The Floe runtime consists of a data flow
coordinator for orchestration and a resource manager for provisioning. These are particularly suited to
leverage the elasticity offered by public and private Cloud infrastructure. The resource manager acquires
virtual machine (VM) instances on-demand from a Cloud provider for a data flow execution and the
coordinator instantiates and activates the data flow on these. Tasks in the data flow may be co-located in
one VM or across VMs based on their initial resource needs. Multi-core support ensures CPU resource
for tasks are sandboxed. Adaptability knobs present in the coordinator allow it to scale out data parallel
tasks in case QoS needs are not met, or scale in when resources are dormant. QoS may be specified in
terms of the latency for data ingest for our integration pipeline and a cost metric for bounding resource
use. These features allow us to dynamically scale out the data ingest from a few hundred to over 50,000
sensors at data rates of every 5–15 minutes, modified at runtime, ensuring that the required data freshness
is maintained while optimizing VM resource utilization.

Floe offers novel properties of hybrid data models, continuous and batch execution, dynamic recompo-
sition and autoscaling on Cloud resources. There is limited work on such hybrid data flow models 23 and

1Floe: Designing a Continuous Data Flow Engine for Dynamic Applications on the Cloud, Yogesh Simmhan, Sreedhar Natarajan, Alok
Kumbhare and Viktor Prasanna, Under Review

2Daniel Zinn, Quinn Hart, Timothy M. McPhillips, Bertram Ludäscher, Yogesh Simmhan, Michail Giakkoupis and Viktor K. Prasanna,
Towards Reliable, Performant Workflows for Streaming-Applications on Cloud Platforms, CCGRID , 2011

3Chathura Herath and Beth Plale, Streamflow - A programming model for data streaming in scientific workflows, CCGrid, 2010

4

few if any workflows allow runtime recomposition needed for dynamic applications. A constrained form
of autoscaling is offered by providers like Amazon EC2 for simple transaction processing applications,
but not for complex data flows.
B. Regression Tree Learning using OpenPlanet MapReduce

The regression tree algorithm is a compute and memory intensive algorithm. This limits its possibility
to scale up to meet large training datasets. As an example, the algorithm implemented in Weka uses 7GB
RAM for a 6 Million tuple training dataset, beyond which the time complexity increases super linearly due
to virtual memory swapping. OpenPlanet4 is our distributed implementation of the PLANET MapReduce
algorithm 5 for training regression trees using Hadoop. OpenPlanet uses a form of iterative MapReduce,
where each iteration constructs one level of the decision tree by performing a full data scan on the training
data file present in HDFS. There can be three MapReduce job types that are scheduled in every iteration,
depending on the size of the training data partition corresponding to each leaf node introduced in the
previous iteration. For leaf nodes whose data partition fits in a host’s memory, an InMemoryWeka Hadoop
job extracts that data partition from the training file and builds the rest of that subtree using the Weka
Machine Learning Java Library. For leaf nodes whose data partitions do not fit in memory, a Histogram
Hadoop job samples the data for candidate split points followed by an ExpandNodes Hadoop job that
evaluates the best split point for each leaf node to generate the next level of its children. We make two
unique contributions that exhibit the scalability characteristic of OpenPlanet. One, we optimize HDFS
block sizing and memory threshold to switch from ExpandNodes to InMemoryWeka that significantly
improves the speedup of OpenPlanet. Two, we support ensemble runs of OpenPlanet to allow construction
of models with different configurations while using the same training data.

Existing statistical and machine learning packages such as Weka and Matlab are restricted to a single
machine implementation of regression tree which does not scale out. Apache Mahout which offers a
scalable machine learning toolkit does not support the regression tree model.

IV. DEMONSTRATION

Our online demonstration of the DR Application will show case the scalability of the information
integration pipeline using Floe and forecast model training using OpenPlanet through the portal interface.
Figure (a) shows the architecture of the demonstration setup. Sensor, weather and scheduling data from the
USC campus will be ingested by the integration pipeline that is instantiated by Floe on our private Cloud,
Tsangpo, running the Eucalyptus fabric. This Cloud infrastructure located at USC provides seventeen
nodes, each with 8-core AMD Opterons rated at 2 GHz each and 16 GB RAM, for a total of 136 available
cores. Floe will scale out on this Cloud through VM resource acquisition as the number of sensors ingested
increases at runtime, and, conversely, scale in when the load is lighter. This dynamism in ingested sources
will be visible through the portal that can query and present information from the repository, itself hosted
on a server co-located with Tsangpo. The OpenPlanet ensemble runs will be launched on the Sierra
cluster at UCSD that is part of FutureGrid project. These nodes have an 8-core Intel Xeon 2.5GHz CPU
and 32GB memory. A Hadoop environment is configured on these nodes on-demand using MyHadoop.
The portal interface will allow a data analyst to select the parameter space for the ensemble training and
launch the runs. Training data will be extracted from the repository at USC and staged to HDFS on the
Sierra cluster nodes. The trained models will be moved back to the repository server and be used for
plotting the forecast power consumption for USC campus buildings.

ACKNOWLEDGMENT

This material is based upon work supported by the United States Department of Energy under Award
Number DEOE0000192 and the National Science Foundation under Award CCF-1048311. The views and

4Scalable Regression Tree Learning on Hadoop using OpenPlanet, Wei Yin, Yogesh Simmhan and Viktor Prasanna, Under Review
5PLANET: Massively Parallel Learning of Tree Ensembles with MapReduce, Biswanath Panda, Joshua S. Herbach, Sugato Basu, Roberto

J. Bayardo, VLDB 2009

5

opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any
agency thereof. We thank FutureGrid for resources provided to run these OpenPlanet experiment, under
NSF Award 0910812.

	Introduction
	Smart Grid Demand Response Management
	Information Integration Pipeline
	Machine Learned Demand Forecasting Models
	Information Diffusion Portal

	Adaptive Architecture
	Information Ingest Pipeline using Floe
	Regression Tree Learning using OpenPlanet MapReduce

	Demonstration

